ATICS ${ }^{\text {- }}$-2-63A-ISO ATICS ${ }^{\oplus}$-2-80A-ISO

Automatic transfer switching devices with monitoring functions for unearthed safety power supplies

Device features

Perfectly suitable for space-saving

 installation/retrofitting- Compact device for easy setup of safety power supplies with functional safety in accordance with DIN EN 61508 (SIL 2) e.g. for group 2 medical locations in compliance with DIN VDE 0100-710 (VDE 0100-710)/IEC 60364-7-710
- Increased safety and availability by integrating changeover and IT system monitoring in one compact device
- All-in-one: Integration of switch disconnector, control and monitoring electronics for unearthed safety power supplies
- Solutions for any application

Convenient installation and

commissioning

- Saves time and money

Safe operation

- Robust switch disconnector contacts
- Mechanical locking
- Manual operation directly on the device
- Functional safety SIL 2
- Certification by TÜV SÜD in accordance with EN 61508 (VDE 0803) SIL 2 and DIN VDE 0100-710 (VDE 0100-710)

Uninterrupted maintenance

- Plug connectors and optional bypass switch
- Excellent communication and parameterisation options

Approvals and certifications

Task

Power supplies for sensitive equipment used in group 2 medical locations, for example, must function safely and reliably even in the event of malfunctions.
A major contribution to achieve this are redundant supply lines and the design of an unearthed power supply system (IT system).

Product description

ATICS ${ }^{\ominus}$ transfer switching devices provide all functions for changeover between two independent power supplies and for monitoring unearthed power supplies. The power section and the electronic system integrated in one flat, compact enclosure allow space-saving installation into the respective control cabinet, simplifies wiring and reduces fault potential. To ensure maximum availability, ATICS $^{\circledR}$ has been designed in strict accordance with the guidelines for functional safety.
Connectors at all connecting wires in combination with optional bypass switch allow ATICS® to be tested without interruption of the power supply. During service works, it is possible to repair or replace the device without interrupting the power supply. ATICS ${ }^{\ominus}$ considerably enhances the safety level particularly in intensive care units and in operating theatres.

Changeover

- Automatic changeover to the second (redundant) line on loss of the preferred supply or when the values are outside the permissible voltage range
- Voltage monitoring line $1 / 2$ (input) and line 3 (output)
- Automatic return to the preferred line on voltage recovery
- Monitoring for short circuits at the output of the switching device or at the distribution board downstream of the transfer switching device avoids damaging switching operations
- Manual operation, optionally locked with a padlock

IT system (unearthed power supply)

- Insulation monitoring
- Load and temperature monitoring IT system/transformer
- Optional insulation fault location system

Messages

- Status indication of operating, warning and alarm messages via integrated graphic display and external indication on MK2430/MK800/TM800 alarm indicator and operator panels
- Automatic reminder for prescribed tests and service intervals
- History memory for events, messages, tests and parameter changes
- Exchange of information with alarm indicator and operator panels via BMS bus

Additional functions

- Automatic monitoring of all programme and data storage as well as essential internal components and connecting wires for proper functioning
- Programmable relay output (alarm relay)
- Programmable digital input

Staggered restarting

If line and line 2 fail simultaneously, the energy storage ATICS ${ }^{\ominus}$-ES supplies the energy required for switching the ATICS®-2-xxA-ISO-ES to position " 0 ". This has the following advantages:

- When the voltage is restored, the ATICS ${ }^{\circledR}$ switching device selectively switches the power supply on.
- A generator can switch on without a load being immediately present. If there are several ATICS ${ }^{\circledR}$ transfer switching devices, they can be switched on one after the other in staggered order.

Standards

The transfer switching device conforms to the following standards:

- DIN VDE 0100-710 (VDE 0100 Part 710):2002-11*
- DIN VDE 0100-710 (VDE 0100 Part 710):2012-10*
- DIN VDE 0100-710 (VDE 0100-710) Supplement 1:2014-06
- DIN VDE 0100-718 (VDE 0100-718):2014-06
- ÖVE/ÖNORM E 8007:2007-12-01
- IEC 60364-7-710:2002-11*
-DIN EN 61508-1 (VDE 0803-1):2011-02*
- IEC 61508-1 (2010-04) Ed. 2.0*
- DIN EN 61508-2 (VDE 0803-2):2011-02*
- IEC 61508-2 (2010-04) Ed. 2.0*
- DIN EN 61508-3 (VDE 0803-3):2011-02*
- IEC 61508-3 (2010-04) Ed. 2.0*
- DIN EN 60947-6-1 (VDE 0660-114):2014-09
- IEC 60947-6-1 (2013-12) Ed. 2.1
- DIN EN 61557-8 (VDE 0413-8):2015-12

Ordering details

Rated operational voltage U_{e}	Nominal system voltage U_{n}	Rated operational current $/$ e		Art. No.
AC	AC	AC		
230 V	230 V	63 A	ATICS-2-63A-ISO	B92057202
		80 A	ATICS-2-80A-ISO	B92057203
	400 V	63 A	ATICS-2-63A-ISO-400	B92057204
		80 A	ATICS-2-80A-ISO-400	B92057205
	230 V	63 A	ATICS-2-63A-ISO-ES	B92057206
		80 A	ATICS-2-80A-IS0-ES	B92057207

Accessories

Standard-compliant isolating transformer monitoring according to:

- DIN EN 61558-1 (VDE 0570-1):2006-07
- DIN EN 61558-1/Amendment 1 (VDE 0570-1/Amendment 1):2008-11
- DIN EN 61558-1/Amendment 2 (VDE 0570-1/Amendment 2):2008-12
- DIN EN 61558-1/A1 (VDE 0570-1/A1):2009-11

The standards marked with * were part of the test conducted by TÜV Süd.

Description	Rated operational current l_{e}	Type	Art. No.
	AC		
Bypass switch kit	63 A	ATICS-BP-2-63A-SET	B92057252
	80 A	ATICS-BP-2-80A-SET	B92057253
Energy storage for ATICS ${ }^{\circledR}$	-	ATICS-ES*	B92057255

* ATICS-ES may only be used in combination with the following ATICS ${ }^{\ominus}$ transfer switching
devices: B92057206, B92057207.
Suitable system components

Description	$\begin{array}{c}\text { Rated operational } \\ \text { current } / \mathrm{e}\end{array}$	Type	Art. No.
	AC		
Bypass switch kit	63 A	ATICS-BP-2-63A-SET	B92057252
$\begin{array}{c}\text { Energy storage } \\ \text { for ATICS }\end{array}$	80 A	ATICS-BP-2-80A-SET	B92057253

Dimension diagram

Dimensions in mm

BENDER

Application examples

Application example operating theatre

- ATICS ${ }^{\ominus}-2-63 \mathrm{~A}-$ ISO: Changeover between the preferred and the redundant line while monitoring the medical IT system with transformer load and temperature monitoring
- IR426-D47: Monitoring of the operating theatre light IT system (optional)
- MK2430/MK800/TM800: Alarm at at least two points with independent power supplies for functional safety
- ATICS-ES: Energy storage (B92057206, B92057207 only)

Example intensive care unit

- ATICS ${ }^{\ominus}-2-63 \mathrm{~A}-\mathrm{ISO}:$ Changeover between the preferred and the redundant line while monitoring the medical IT system with transformer load and temperature monitoring
- EDS151: Insulation fault locator or fast insulation fault localisation (recommended)
- ATICS ${ }^{\circledR}$-BP: Bypass switch for uninterrupted test/ maintenance (recommended)
- MK: Alarm at at least two points with independent power supplies for functional safety
- ATICS-ES: Energy storage (B92057206, B92057207 only)

Technical data

Overvoltage category	III
Pollution degree outside, inside	2
Rated insulation voltage	250 V
Protective separation between \quadline 1 - line $2 ;$ line 1,2,3 - digital inputs; line 1,2,,	2; line 1,2,3 - RS-485 1,2,3-relay outputs
Voltage test according to IEC 61010-1 (basicinsulation/protective separation)	tion) $2.21 \mathrm{kV} / 3.54 \mathrm{kV}$
Supply voltage	
Rated operational voltage U_{e}	AC $50 \ldots . .60 \mathrm{~Hz}, 230 \mathrm{~V}$
Supply voltage $U_{\text {S }}$	see ordering details
Power consumption at 63 A	$\leq 16 \mathrm{~W}$
Power consumption at 80 A	$\leq 28 \mathrm{~W}$
Current during changeover process	$17 \mathrm{~A} /<30 \mathrm{~ms}$
Power section/switching elements	
Nominal system voltage U_{n} ref	refer to ordering details
Frequency range f_{n}	$48 . . .62 \mathrm{~Hz}$
Crest factor	≤ 1.2
Number of switching cycles (mechanical)	≥ 8000
Short circuit current $I_{c c}$ and fuses	

Voltage monitoring/changeover

Frequency range f_{n}	$40 . . .70 \mathrm{~Hz}$
Undervoltage response value (Alarm 1)	1) $160 . . .207 \mathrm{~V}(1-\mathrm{V}$ steps $)$
Overvoltage response value (Alarm 2)) $240 \ldots 275 \mathrm{~V}(1-\mathrm{V}$ steps $)$
Response delay ton	$50 \mathrm{~ms} . . .100 \mathrm{~s}$ (resolution of setting starting 50 ms)
Delay on release toff	$200 \mathrm{~ms} \ldots 100 \mathrm{~s}$ (resolution of setting starting 50 ms)
Hysteresis	2...10\% (1-\% steps)
Frequency measurement	$40 . . .70 \mathrm{~Hz}$ (resolution 0.1 Hz)
Display range measured value	$20 \ldots 300 \mathrm{~V}$
Operating uncertainty	$\pm 1 \%$

Current monitoring (output current)

Measuring current transformers	STW3, STW4
Measuring range In (TRMS)	STW3: $0 \ldots>150$ A, STW4:0... $>260 \mathrm{~A}$

Response value for short-circuit detection ATICS-ISO (versions 63 A and 80 A) with STW3 130 A
Crest factor min. 2

Hysteresis for short-circuit alarm 5%
Cable length:
Single wire $\geq 0.75 \mathrm{~mm}^{2} \quad 0 . .1 \mathrm{~m}$
Single wire, twisted $\geq 0.75 \mathrm{~mm}^{2}$
1... 10 m
Shielded cable $10 . . .40 \mathrm{~m}$

Cable: twisted pairs, shield to terminal 1 at one end, must not be earthed
recommended: $J-Y(S t) Y$ min. $n \times 2 \times 0.8$

IT system monitoring	
Insulation monitoring	
Nominal system voltage (operating range)	80... 275 V
Measuring range	$10 \mathrm{k} \Omega . . .1 \mathrm{M} \Omega$
Measurement method	AMP (adaptive measuring pulse)
Response value $R_{\text {and }}($ ALARM 1)	$50 . .250 \mathrm{k} \Omega$
Relative uncertainty	± 15 \%
Hysteresis	$\leq 25 \%$
Response time $t_{\text {an }}$ at $R_{\mathrm{F}}=0.5 \times \mathrm{Ran}_{\text {and }}$ and $C_{\mathrm{e}}=1 \mu \mathrm{~F}$	$\leq 5 \mathrm{~s}$
Measuring voltage U_{m}	DC12V
Measuring current $I_{m}\left(\right.$ at $\left.R_{F}=0 \Omega\right)$	$\leq 53 \mu \mathrm{~A}$
Internal resistance R_{i}	$\geq 240 \mathrm{k} \Omega$
Impedance Z_{i}	$\geq 220 \mathrm{k} \Omega$
Internal resistance/impedance during test	$\geq 100 \mathrm{k} \Omega$
Permissible extraneous DC voltage $U_{\text {fg }}$	\leq DC370 V
Permissible system leakage capacitance C_{e}	$\leq 5 \mu \mathrm{~F}$
Automatic self test	every hour
Response time for loss of earth connection as well as loss of network connection	
	maximum 1 hour

Load current monitoring (IT system transformer)

Measuring current transformers STV2,	STW2, STW3, SWL-100 A
Measuring range IL (TRMS) $10 \ldots 110 \%$	$10 . . .110 \%$ of the response value
Adjustable response value (STW2, STW3, SWL-100A) 5...(5...(50) $100 \mathrm{~A}(1-\mathrm{Asteps}$)
Relative uncertainty	5\%
Crest factor	
Response time	<1
Response delay ton $0 . . .100 \mathrm{~s}$ (step	$0 \ldots 100 \mathrm{~s}$ (step-by-step in $1-\mathrm{s}$ steps)
Delay on release toff $0 \ldots 100 \mathrm{~s}$ (step	$0 . . .100 \mathrm{~s}$ (step-by-step in 1-s steps)
Hysteresis	5...30\%
approx. 1 h (or immediately in case of "TEST Isometer")	
Cable length:	
Single wire $\geq 0.75 \mathrm{~mm}^{2}$	-... 1 m
Single wire, twisted $\geq 0.75 \mathrm{~mm}^{2}$	1... 10 m
Shielded cable $0.5 \mathrm{~mm}^{2}$	10... 4
Cable: twisted pairs, shield to terminal 1 at one end, must not be ear recommended: J-	must not be earthed commended: $J-Y(S t) Y$ min. $\mathrm{n} \times 2 \times 0.8$
Temperature monitoring (IT system transformer)	
Response value	4 k ת
Relative uncertainty	$\pm 10 \%$
Release value	$1.6 \mathrm{k} \Omega$
Response time (overtemperature or open-circuit temperature sensor) $\leq 2 \mathrm{~s}$	
PTC resistors acc. to DIN 44081	max. 6 in seris

Insulation fault location

Test current/T	$<1 \mathrm{~mA}$
Test cycle/pause	$2 / 4 \mathrm{~s}$
Displays and data memory	
Display: graphic display	languages DE, EN, FR
Alarm LEDs	line 1, line 2, alarm, com
History memory	500 data records
Data logger	500 data records/channel
Config. logger	300 data records
Test logger	100 data records
Service logger	100 data records

Technical data (continuation)

Input	
Digital inputs	1
Galvanic separation	yes
Control	via potential-free contacts
Mode of operation	active at 0 V (low) or 24 V (high), adjustable
Voltage range high/low	AC/DC 10...30 $/$ /AC/DC $0 \ldots . .0 .5 \mathrm{~V}$
Adjustable functionswitt operation, function test, lights, alarm input for ot	ng function, manual/automatic mode, bypass ferred line, alarm input for operating theatre

Terminals	
Power section	
Connection directly on ATICS®, for plug connections	ns screw-type terminals
rigid (flexible)/conductor sizes $\quad 10 \ldots 70 \mathrm{~mm}^{2}(6$	$10 \ldots 70 \mathrm{~mm}^{2}\left(6 \ldots 50 \mathrm{~mm}^{2}\right) / 8(10) \ldots 0$ AWG
Stripping length	15 mm
Tightening torque (hexagon socket 4 mm)	5 Nm
Connection type pluga	pluggable screw-type terminals
Conductor cross section, rigid min/max	$1.5 / 35 \mathrm{~mm}^{2}$
Conductor cross section, flexible min/max	$1.5 \mathrm{~mm}^{2} / 25 \mathrm{~mm}^{2}$
Conductor cross section AWG/min/max	20/2
Stripping length (do not use ferrules)	20 mm
Tightening torque (Torx ${ }^{\text {® }}$ screwdriver T 20 or slotted screwdriver $6.5 \times 1.2 \mathrm{~mm}$)	
	$2.5 \mathrm{Nm}\left(\leq 25 \mathrm{~mm}^{2}\right)$
	$4.5 \mathrm{Nm}\left(\geq 25 \mathrm{~mm}^{2}\right)$
Torque setting for manual operation (Allen 5 mm)	5 mm) approx. 6 Nm
Electronics	
Connection	screw-type terminals
rigid/flexible/conductor sizes 0	$0.14 \ldots 1.5 \mathrm{~mm}^{2} / 28 \ldots 16$ AWG
Stripping length	7 mm
Tightening torque (slotted screws, screwdriver $2.5 \times 0.4 \mathrm{~mm}$)	er $2.5 \times 0.4 \mathrm{~mm}) \quad 0.22 \ldots 0.25 \mathrm{Nm}$
Other	
Operating mode	continuous operation
Mounting	display-oriented
Operating altitude up to a maximum of	2000 m AMSL
Protection class	Class I
Protection class LCD under foil (DIN EN 60529)	9) IP40
Enclosure material	polycarbonate
Flammability class	UL94V-0
DIN rail mounting	acc. to IEC 60715
Screw mounting	$4 \times \mathrm{M} 5$
Dimensions incl. terminals ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)	$234 \times 270 \times 73$
Weight	approx. 3400 g

Bender GmbH \& Co. KG

P.O. Box $1161 \cdot 35301$ Grünberg • Germany Londorfer Straße 65 • 35305 Grünberg • Germany
Tel.: +49 6401 807-0 • Fax: +49 6401 807-259
Stationary use (IEC 60721-3-3) 3M4
Transport (IEC 60721-3-2) 2M2
Long-term storage (IEC 60721-3-1) 1M3

E-mail: info@bender.de • www.bender.de

Optec AG | Guyer-Zeller-Strasse 14 | CH-8620 Wetzikon ZH
Telefon: +41449330770 | Telefax: +41449330777
E-Mail: info@optec.ch I Internet: www.optec.ch

