

RCMB132-01

Allstromsensitives Differenzstrom-Überwachungsmodul zur Messung von Gleich- und Wechselströmen bis ±100 mA

Bestimmungsgemäße Verwendung

Das allstromsensitive Differenzstrom-Überwachungsmodul überwacht elektrisch geerdete Stromversorgungen bis 300 V und angeschlossene Verbraucher bis zu Nennströmen von 32 A auf Ableit- und Fehlerströme. Das Modul ist für den Einbau in Verteilungseinrichtungen wie PDUs (Power Distribution Units), Abgangskästen oder Mehrfachsteckdosen konzipiert und wird mit DC12...24 V versorgt.

Eine andere oder darüber hinausgehende Benutzung gilt als nicht bestimmungsgemäß.

Sicherheitshinweise allgemein

Bestandteil der Gerätedokumentation sind neben diesem Handbuch die beiliegenden "Sicherheitshinweise für Bender-Produkte".

Montage, Anschluss und Inbetriebnahme nur durch Elektrofachkraft! Beachten Sie unbedingt die bestehenden Sicherheitsvorschriften.

i

DAs Signalwort

bezeichnet eine Gefährdung mit einem hohen Risikograd, die, wenn sie nicht vermieden wird, den Tod oder eine schwere Verletzung zur Folge hat.

Dieses Symbol bezeichnet Informationen, die Ihnen bei der optimalen Nutzung des Produktes behilflich sein sollen.

Lieferumfang

- 1 RCMB132-01
- 2 vierpolige Stecker (Phoenix Contact, PTSM 0,5/4-P-2,5)
- 1 Abdeckstopfen zum Schutz einer offenen Buchse

Gerätemerkmale

- Allstromsensitive Ableit- und Fehlerstromüberwachung zur vorbeugenden Instandhaltung
- Hohe Auflösung zur Realisierung der Geräteableitstrom-Überwachung
- Messwert- und Alarm-Übertragung über Modbus RTU (RS-485)
- Frequenzbereich DC...2 kHz
- Kompakte Bauform zur Überwachung von Nennlasten bis $I_n = 32 \text{ A}$
- · Geringe Laststromempfindlichkeit durch vollgeschirmten Messstromwandler
- Kontinuierliche Anschlussüberwachung des Messstromwandlers
- · Integrierte Testfunktion
- Versorgungsspannung DC 12...24 V

Funktionsbeschreibung

Das RCMB132-01 dient der Messung von Differenzströmen und der Ausgabe der Werte über eine Schnittstelle. Die Messung des Differenzstromes erfolgt allstromsensitiv. Dabei wird der Effektivwert (rms) aus der im Differenzstrom enthaltenen DC-Komponente sowie der unter 2000 Hz liegenden Wechselstromkomponente gebildet. Das RCMB132-01 überprüft kontinuierlich den Anschluss des internen Messstromwandlers.

Über die RS-485-Schnittstelle:

- wird ein zum Effektivwert proportionales Signal übertragen (Messwertaktualisierung alle 180 ms)
- · werden Alarmmeldungen signalisiert
- · werden Ansprechwerte konfiguriert
- kann ein Funktionstest ausgelöst werden

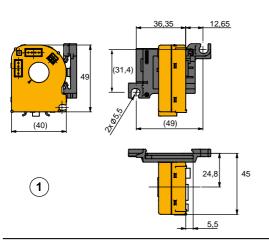
Die vorhandenen Schaltausgänge S1 und S2 schalten bei Überschreitung des jeweils eingestellten Ansprechwertes oder einem Funktionsfehler in den Alarmzustand.

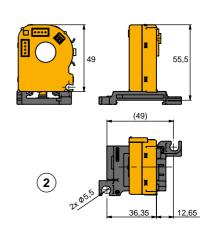
Beim Schalten von S2 (rms) wird gleichzeitig auch S1 (DC) geschaltet.

Alle Angaben in mm

Montage und Anschluss

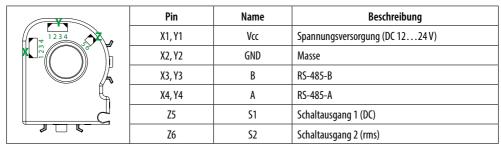
GEFAHR eines elektrischen Schlages! Vorhandene Schutzleiter und niederohmige Leiterschleifen dürfen grundsätzlich nicht durch den

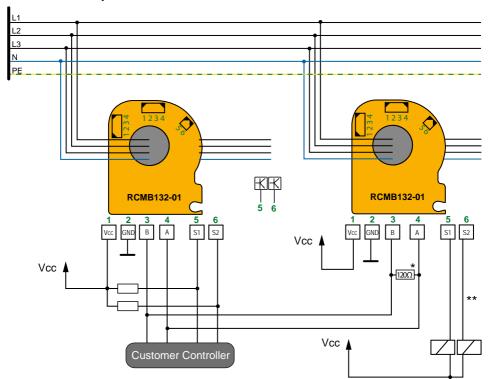

Messstromwandler geführt werden!


Durch die verwendete allstromsensitive Messtechnik könnten sonst hohe Ströme in die Leiterschleife induziert werden.

- Die Standard-Modbusadresse des Überwachungsmoduls ist 100. Werden mehrere Überwachungsmodule in einer Anlage verbaut, sollten vor der gemeinsamen Inbetriebnahme am Bus die Modbusadressen eingestellt werden.
- Primärleiter müssen so isoliert sein, dass sie für die Bemessungsspannung die Funktion der Basis-Isolierung erfüllen.

Hutschienenmontage


Montage mit Montagefuß MCCT20 (Zubehör, siehe Bestellangaben)



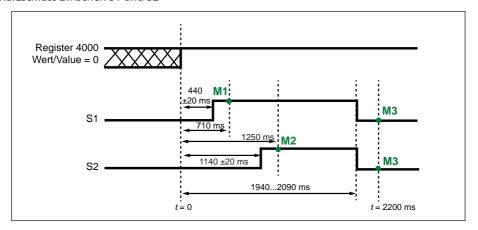
Pinbelegung

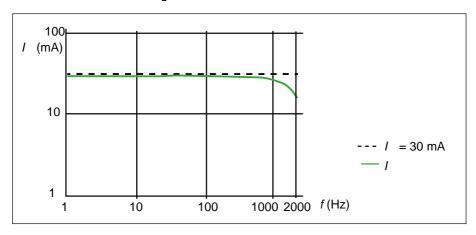
Die beiden vierpoligen Anschlüsse **X** und **Y** sind als Kombinationen aus Buchse und Stecker ausgeführt, der zweipolige Anschluss **Z** als Push-in-Klemme.

Anschlussbild (Beispiel)

^{*} Abschlusswiderstand 120 Ω muss nur beim letzten Gerät in der Kette des RS-485-Busses gesetzt werden.

Timingdiagramm "Funktionstest"erforderlich.


^{**} Eine externe Schutzbeschaltung ist insbesondere bei induktiven Lasten


Sobald erkannt ist, dass Register 4000 den Wert 0 hat, beginnt die Zeitmessung mit t = 0.

M1...3 im Timingdiagramm sind die Zeitpunkte, zu denen eine übergeordnete Steuerung während des Funktionstests prüfen kann und sollte, dass die Schaltausgänge S1...2 tatsächlich unabhängig voneinander schalten. Mögliche Ursachen für einen fehlgeschlagenen Funktionstest:

- · S... ist permanent mit GND verbunden
- S... ist permanent mit Vcc verbunden
- Kurzschluss zwischen S1 und S2

Frequenzgang bei Sollwert $I_{\Lambda} = 30 \text{ mA}$

Gestrichelt: I_{Δ} (Sollwert) Grün: I_{Δ} (Messwert)

Übersicht der Modbusregister

Unterstützte Function codes:

0x03 Read Holding Registers 0x04 Read Input Registers 0x06 Write Single Register 0x10 Write Multiple Registers

Eigenschaften der Register:

RO Read Only WO Write Only RW Read and Write

"Broadcast" (Adresse "0"): Aktion ausführen, keine Antwort senden. Broadcast funktioniert nur bei Schreibbefehlen.

- Wenn es mehr als einen Slave am Bus gibt, darf eine Änderung der Busadresse auf keinen Fall per Broadcast angestoßen werden.
- Wird bei einem Schreibzugriff ein neuer Parameterwert gespeichert, so verzögert sich die Antwort des Überwachungsmoduls für eine maximale Zeit von 55 ms aufgrund des internen Speichervorgangs. In dieser Zeit ist keine Modbus-Kommunikation möglich. Bei mehreren Schreibzugriffen (Function Code 0x10, Write Multiple Registers) addieren sich die Zeiten.

Messwerte und Status

Register	Eigen- schaft	Beschreibung	Format	Bemerkung/Einheit	Bereich			
2000	RO	Messwert I _{An rms}	UINT16	x 0,1 mA	01000			
2001	RO	Messwert I _{An DC}	UINT16	x 0,1 mA	01000			
2002	RO	Statuswort 1 1)	UINT16	Bit	00xFFFF			
2003	RO	Statuswort 2 ²⁾	UINT16	Bit	00xFFFF			
2004	RO	Version Applikationssoftware (dezimal)	UINT16	103dez = V1.03	00xFFFF			
2005	RO	Version Kommunikations-API (dezimal)	UINT16	256dez = V2.56	00xFFFF			
2006	RO	Version Software (dezimal)	UINT16	604dez = D0604	065535			
2007		Reserviert						
2008		Reserviert						
2009	RO	Seriennummer	UINT32	HiWord	02 ³² -1			
2010	KU	Seriennummer	UINT32	LoWord	021			
2011	RO	Maximalmesswert I _{An ms} ³⁾	UINT16	x 0,1 mA	01000			
2012)	RO	Maximalmesswert I _{An DC} 3)	UINT16	x 0,1 mA	01000			
20132999	Reserviert							

³⁾ Maximaler Messwert seit dem letzten Lesen von Register 2000 bzw. 2001

1) Statuswort 1

Status-Byte	Bit	Bedeutung	Wert	
	Bit 0	Status ERR_OUT	0 = Fehler, deaktiviert 1 = kein Fehler, aktiviert	
	Bit 1	Status S1	0 = aus, deaktiviert, ausgelöst	
	Bit 2	Status S2	1= ein, aktiviert, nicht ausgelöst	
1 1	Bit 3	Reserviert		
	Rit /	Bit 4 Ergebnis letzter Funktionstest	0 = kein Fehler	
	DIL 4		1 = gemessener Strom zu niedrig	
	Bit 56		Reserviert	
	Bit 7	Sammelfehler	0 = kein Fehler	
	DIL /	Janinenene	1 = Fehler	
2	Bit 815	Reserviert		

2) Statuswort 2

Status-Byte	Bit	Bedeutung	Wert
	Bit 07		Reserviert
3	Bit 8	RMS Messung Status	0 = RMS-Wert < Ansprechwert 1 = RMS-Wert > Ansprechwert
4	Bit 9	DC Messung Status $0 = DC-Wert < Ansprechwert \\ 1 = DC-Wert > Ansprechwert$	
	Bit 1015		Reserviert

Parameter

Dauer Schreibzugriff: 55 ms.

Beim Schreiben wird zunächst noch der alte Wert gesendet. Erst danach erfolgt die Umstellung auf den neuen Wert.

Register	Eigen- schaft	Beschreibung	Format	Bemerkung/Einheit	Bereich
	schart				
3000	RW	Ansprechwert I	UINT16	x 0,1 mA	3,5100,0 mA
3001	RW	Ansprechwert I	UINT16	Beispiel: 300 = 30,0 mA	3,5100,0 IIIA
3002	RW	Busadresse	UINT16		1247
3003	RW	Baudrate	UINT16		0* = 19200 bps
3003	IVAA	Daudiate	UNITIO		1 = 9600 bps
3004	RW	Transmission Mode	UINT16		0* = 1-8-E-1; 1 = 1-8-0-1
3004	KVV	Transmission Mode	UINTIO		2 = 1-8-N-2; (3 = 1-8-N-1)
30053999	Reserviert				

^{* =} Werkseinstellung

Steuerung (Test, Reset, Modul finden)

Register	Eigen- schaft	Beschreibung	Format	Bemerkung/ Einheit	Bereich	
4000	WO	Test & Reset	UINT16	Test = ca. 2 s (siehe Timingdiagramm Abb. 8–1)	0 = Start Funktionstest ohne Offset- messung 1 = Start Funktionstest mit Offset- messung Verbraucher müssen ab- geschaltet sein 2 = Reset Messung 3 = Reset μC	
40014009				Reserviert		
4010	W0	Modul finden 1)	UINT16	Blinkzeit der LED in s	130	
40114019				Reserviert		
4020	W0	Reset auf Werksein- stellungen (FAC)	UINT16		0 = Reset Register 30003001 auf FAC 1 = Reset Register 30003004 auf FAC	
40214999		Reserviert				

¹⁾ Voraussetzung: jedes Modul hat eine eindeutige Bus-Adresse. Beim Schreiben in Register 4010 wird genau ein Slave über seine Busadresse angesprochen und beginnt schnell zu blinken. Der Registerinhalt 4010 ist die Blinkdauer, die zur Suche dieses Moduls verwendet werden soll.

Sonderanwendungen

Die folgenden Register können zur erweiterten Identifizierung und Adressierung der Module verwendet werden. Die drei möglichen Funktionen werden unter der Registerbeschreibung erläutert.

Mit dem in Register 60000 "Selektor" geschriebenen Wert wird die auszuführende Aktion gewählt. Es wird stets "Selektor + Seriennummer + weitere Daten" geschrieben (Function Code 0x10, Write Multiple Registers). Ausnahme: Lesen der Seriennummer in 60001...60002 mit Function Code 0x03 (Read Multiple Registers).

Register	Eigenschaft	Beschreibung	Format	Bemerkung/Einheit	Bereich
60000	W0	Selektor 1)	UINT16		0 = Modul finden
60000	WU	Selektor "	UINTIO		1 = neue Busadresse setzen
6000160002	RW 2)	Seriennummer 3)	UINT32		02 ³¹ -1
60003	W0	Data 1	UINT16	Selektor in 60000 bestimmt Inhalt	Selektor = 0: Blinkzeit LED 130 s Selektor = 1: Busadresse 1247
6000469999				Reserviert	

Register 60000 kann nur gemeinsam mit dem korrekten Registerinhalt aus 60001...60003 geschrieben werden. Die drei Register werden dabei als Erweiterung der Modbusadresse verwendet und nur derjenige Slave reagiert, dessen Modbusadresse und Seriennummer übereinstimmen.

²⁾ **Schreiben**: Ein bestimmtes Modul ansprechen

Beim gemeinsamen Schreiben mit Register 60000 wird die werksseitige Seriennummer des Moduls aus Register 2009 eingetragen. Sie wird als Erweiterung der Busadresse angesehen, so dass nur das Modul mit genau dieser Seriennummer reagiert.

Lesen: Seriennummern vorhandener Module abfragen

Beim Lesen von Register 60001...60002 antwortet jedes Modul mit der angegebenen Modbusadresse nach einer zufälligen Verzögerungszeit. Sollten mehrere Module dieselbe Modbusadresse haben, werden durch unterschiedliche Verzögerungen gleichzeitige Antworten vermieden (Kollisionen führen zu crc-Fehlern). Der Master muss für das Lesen der Seriennummer eine Timeout-Zeit von 700 ms beachten, damit auch die letzte mögliche Antwort noch korrekt empfangen werden kann.

Während dieser Zeit speichert er alle eingegangenen Antworten.

³⁾ **Die Seriennummer kann nicht geändert werden**. Der Schreibzugriff bezieht sich lediglich auf das blockweise Schreiben der Register 60000...60003, um eine Modbusadresse zu ändern oder ein Modul zu identifizieren.

1. Signalisierung bei bekannter Seriennummer auslösen ("Modul finden")

Voraussetzung:

Die Seriennummern der Module sind bekannt.

Ist dieselbe Busadresse mehreren Modulen zugewiesen (weil beispielsweise die Werks-Adresseinstellungen noch nicht geändert worden sind), kann die bekannte Seriennummer verwendet werden, um eine LED anzusteuern und dadurch das Modul zu identifizieren.

Es kann auch eine Broadcast-Anfrage gestellt werden, um ein Modul mit bekannter Seriennummer (aber unbekannter Modbusadresse) blinken zu lassen.

Master-Request

Function Code	0x10	1 Byte	
Startadresse	60000	2 Bytes	
Anzahl Register	4	2 Bytes	
Byte count	8	1 Byte	
Selektorwert	0	2 Bytes	Register 60000
Seriennummer HiWord	Serial High	2 Bytes	Register 60001
Seriennummer LoWord	Serial Low	2 Bytes	Register 60002
LED Blinkzeit	Flashing time (130 s)	1 Byte	Register 60003

2. Neue Busadresse bei bekannter Seriennummer zuweisen

Voraussetzung:

Die Seriennummern der Module sind bekannt.

Jedes Modul muss eine eigene Modbus-Adresse haben, über die es angesprochen werden kann. Ist dies in der Einrichtungsphase versäumt worden, so dass mehrere Module nun dieselbe Adresse haben (Werkseinstellung: 100), kann die bekannte Seriennummer als Erweiterung der Modbus-Adressierung verwendet werden. Die Register 60000...60003 müssen gemeinsam als Block geschrieben werden. So spricht nur das Modul an, dessen Busadresse sowie Seriennummer übereinstimmen.

Master-Request

Es kanr

Es kann auch eine Broadcast-Anfrage gestellt werden, um einem Modul mit bekannter Seriennummer (aber unbekannter Modbusadresse) eine neue Modbusadresse zuzuweisen.

Function Code	0x10	1 Byte	
Startadresse	60000	2 Bytes	
Anzahl Register	4	2 Bytes	
Byte count	8	1 Byte	
Selektorwert	1	2 Bytes	Register 60000
Seriennummer HiWord	Serial High	2 Bytes	Register 60001
Seriennummer LoWord	Serial Low	2 Bytes	Register 60002
Neue Busadresse	Bus address (1247)	1 Byte	Register 60003

3. Mehrere Module am Bus mit gleicher Adresse identifizieren

Die Seriennummern der Module sind unbekannt.

Sollen Modulen neue Modbusadressen zugeordnet werden, müssen die Seriennummern bekannt sein. Wenn die Seriennummern nicht bekannt sind, müssen sie zunächst ausgelesen und den Modulen zugeordnet werden. Damit dies auch funktioniert, wenn Modbusadressen mehrfach vergeben sind, wird die Antwort jedes Moduls (9 Byte insgesamt) mit einer zufälligen Verzögerung gesendet. Bei mehreren Slaves mit derselben Busadresse besteht somit eine gewisse Wahrscheinlichkeit, dass die Antworten nicht kollidieren und vom Master gelesen werden können. Empfängt der Master eine korrekte Antwort, speichert er sie und wartet auf weitere Antworten, bis die Timeout-Zeit (700 ms) abgelaufen ist.

Wird einer korrekt gelesenen Seriennummer eine neue Busadresse zugewiesen, kann dieses Modul durch eine Funktion im Master von einer wiederholten Anfrage der Seriennummer ausgeschlossen werden.

Master-Request

Function Code	0x03 (oder 0x04)	1 Byte
Startadresse	60001	2 Bytes
Anzahl Register	2	2 Bytes

Technische Daten

Isolationskoordination nach IEC 60664-1	
Primärkreis	
Sekundärkreis	
Alle folgenden Angaben gelten für die Isolation zwischen Primär- und Sekundärk	
Bemessungsspannung	
Überspannungskategorie	
Bemessungs-Stoßspannung	
Einsatzhöhe	
Bemessung-Isolationsspannung	
Verschmutzungsgrad	2
Sichere Trennung (verstärkte Isolierung)	zwischen Primärkreis und Sekundärkreis
Spannungsprüfung nach IEC 61010-1	AC 2,2 kV
Spannungsversorgung	
Versorgungsspannung $U_{\rm s}$	DC 1224 V
Arbeitsbereich der Versorgungsspannung	
Ripple	
Leistungsaufnahme	< 0,75 W
Messkreis	
Innendurchmesser Primärleiteröffnung	15 mm
Messwertauswertung	
Messbereich	
Charakteristik nach IEC 60755	allstromsensitiv Typ B
<i>I</i> _{Δn1}	
Ansprechwert	
Ansprechtoleranz	0,7 1,0 x / _{Δn1}
J An2	
Ansprechwert	rms 3,5100 mA (* 30 mA)
Ansprechtoleranz	
DC1 kHz	0,7 1,0 x / _{Δn2}
12 kHz	1,02,0 x / _{An2}
Ausgabebereich	00 mA (rms)
Auflösung	
Frequenzbereich	
Messzeit	180 ms
Betriebsmessabweichung	
DC500 Hz	±(5 % + 0,5 mA)
5011000 Hz	$\pm (15 \% + 0.5 \text{ mA})$
12 kHz	(50 % ±0,5 mA)
Zeitverhalten	
Ansprechzeit t_{ae} (Relais-Schaltzeit von 10 ms berücksichtigt)	
bei 1 x J_{Λ_0}	≤ 290 ms
bei 2 x $\int_{\Lambda_0}^{\Delta_0}$	≤ 140 ms
bei 5 x $\int_{\Lambda_{0}}^{\Delta_{0}}$	
Wiederbereitschaftszeit t,	≤2 s
Störgrößen	
Laststrom /	37 Δ
Lasticion ,	

Ansprechwertzuordnung	
I _{Δn1} (DC)	S1
/ _{hp2} (rms)	S2
Ausgänge	
Schnittstelle	RS-485
Protokoll	Modbus RTU
Schaltausgänge	Open Collector, nicht kurzschlussfest
Schaltvermögen	40 V / 50 mA
Ausgangsspannung LOW-Pegel	000000
Ausgangsspannung HIGH-Pegel	3,1 3,1 3,6 V
Hysterese	≤30 %
Umwelt/EMV	
EMV	DIN EN 62020:2003 (VDE 0663), soweit anwendbar
Umgebungstemperatur (inkl. durchgeführte Primärleiter)	−25+70 °C
Klimaklassen nach IEC 60721	
Ortsfester Einsatz (IEC 60721-3-3)	3K5 (ohne Betauung und Eisbildung)
Transport (IEC 60721-3-2)	
Langzeitlagerung (IEC 60721-3-1)	1K22(ohne Betauung und Eisbildung)
Mechanische Beanspruchung nach IEC 60721	
Ortsfester Einsatz (IEC 60721-3-3)	3M4
Transport (IEC 60721-3-2)	
Langzeitlagerung (IEC 60721-3-1)	
Sonstiges	
Betriebsart	
Einbaulage	
Schutzart	3
Entflammbarkeitsklasse	UL94 V-0
Lebensdauer bei 40° C	10 Jahre
Software	D0604
Stecker (im Lieferumfang enthalten)	Phoenix Contact, PTSM 0,5/4-P-2,5

^{* =} Werkseinstellung

Bestellangaben

Тур	Messbereich	U _s	ArtNr.
RCMB132-01	AC/DC ±100 mA	DC 1224 V	B94042136
Montagefuß MCCT20			B91080111

Alle Rechte vorbehalten. Nachdruck und Vervielfältigung nur mit Genehmigung des Herausgebers.

Bender GmbH & Co. KG

Postfach 1161 • 35301 Grünberg • Deutschland Londorfer Str. 65 • 35305 Grünberg • Deutschland Tel.: +49 6401 807-0 • Fax: +49 6401 807-259 E-Mail: info@bender.de • www.bender.de All rights reserved. Reprinting and duplicating only with permission of the publisher.

Bender GmbH & Co. KG

P.O. Box 1161 • 35301 Grünberg • Germany Londorfer Str. 65 • 35305 Grünberg • Germany Tel.: +49 6401 807-0 • Fax: +49 6401 807-259 E-mail: info@bender.de • www.bender.de